
NOTATION 

c'p', volume heat capacity of tungsten; Cp, p, ~, heat capacity, density, and thermal 
conductivity of gas studied; Z, mean free path length; r, filament radius; u, thermal accom- 
modation coefficient of atoms on tungsten; y = 1.7811; 6, radiation correction; U, voltage 
across filament; R, filament resistance; L, filament length; E3, amplitude of third-harmonic 
voltage; x2, molar fraction of diatomic molecules in vapor; T, temperature. 
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DETERMINATION OF THE THERMAL AND ELECTRICAL CONDUCTIVITIES 

OF ULTRAFINE PARTICULATE SYSTEMS 

G. N. Dul'nev, Yu. P. Zarichnyak, 
and V. V. Novikov 

UDC 536.24:537.321 

An ultrafine particulate system with a linear particle deformation close to zero is 
investigated. The thermal and electrical conductivities are determined with regard 
for dimensional effects at the contacts. 

The figure of merit of thermoelectric materials is governed by the loffe parameter z = 
u2c/% [i], which implies that in order to increase the thermoelectric figure of merit at con- 
stant a it is necessary to increase the ratio 8 = o/~ [I, 2]. 

There has been recent discussion in the literature of the possibility of increasing the 
thermoelectric figure of merit of a material on the basis of an ultrafine dispersed system 
With average linear grain size from i00 to 2000 ~, which has been subjected to superficial 
sintering. ~ Experimental studies of such a system [3] have shown that the value of z is in- 
creased severalfold over the value z, for the monolithic material. 

An experimental study of o, u, and ~ has been carried out [6] for a high-porosity (m2 = 
0.7) particulate system with a mean grain size d % 2 ~m obtained from n-Ge. The ratio B = 0/% 
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Fig. i. Structure and model of the ultrafine system, a) 
Actual structure; b) model of ultrafine system. 

for four samples was varied from i0 to 400, and z = (3-6)zi, confirming the conclusions of 
[3]. 

In all the investigations except [5] the experimental results are interpreted by quali- 
tative analysis of heat-transfer and electrical charge transfer processes. The authors of 
[5] have attempted to explain the experimental results on the basis of the models and equa- 
tions of Odelevskii [7], Dul'nev [8], and Vasil'ev [9], which are widely used in determining 
the values of % for porous materials. This approach, however, ignores contact dimensional 
effects, which affect the transfer processes in such systems and thus yield an unsatisfactory 
description of the experimental data. 

Below we propose amodel and equations for determining the effective thermal and electrical 
conductivities % and ~ of an ultrafine-grained system for which the linear particle deformation 
is close to zero, with regard for dimensional effect at the contacts. 

Model of the Particulate System 

In particulate systems having a porosity m2 > 0.4 we distinguish a first-order struc- 
ture, or "matrix," which consists of a relatively dense bed of grains in constant contact, 
and a second-order structure comprising a three-dimensional lattice of larger voids permeat- 
ing the matrix [I0] (Fig. i). Consequently, the determination of the thermal and electrical 
conductivities of the particulate system is divided into two stages. First the conductivity 
A m of the matrix is determined, and then on the basis of the Frei--Dul'nev model with inter- 
permeating components the effective conductivity A of the particulate system is determined 
according to the expression [ii] 

( C Z - - v ( 1  C) C .... ~ - v  C ( 1 - - C )  i v ( l - - C ) Z  ] 
A = A  m vC( l  .... C ) - - ~ ( I - - C - I . C  2) C ( I - - C ) @ 7 ( 1 - - C - i - C  2) ' ( i )  

in which ~ = A~/A m and C = A/L is determined from the equation 

2C3--3CZ-~-1 =m2~. (2) 

Here m22 is the porosity of the second-order structure (Fig. 2) [i0]: 

nZ22 =:(m2---m~m)/(1---mzm), (3) 

where m2m is the porosity of the matrix. The conductivity Am, which rePresents the thermal 
or electrical conductivity of the matrix, is determined on the basis of the average unit ele- 
ment of a particulate system with a totally disordered structure (Fig. 2) [I0]. The geomet- 
rical dimensions of the average element are determined from the expressions 

Y3 .... 2 V ' N m - - 1 / N m ;  Y4 Y3fV 1 --m2m, (4) 

h, 1 - -  • V i - -  yS; Xm: -~ o . , o 2 o , 9)/2m~ m = ~ (mzm- r-3 7-1 (m2m) - - l O m 2 m ~  , (5) 

i n  wh ich  Yi = r i / r ,  h i  = h x / r ,  and • i s  t h e  L i n e a r  s h r i n k a g e  o f  t h e  a v e r a g e  e l e m e n t  due t o  
pressing and sintering of the particulate system. For particulate systems in the free-flow- 
ing state with elastic deformation of the particles • can be taken equal to zero. 

Particulate Systems with • 

Particulate systems of this type include systems in the free-flowing state under a spe- 
cific pressure not greater than i0 kg/cm 2, i.e., systems in which the particles are subjected 
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Fig. 2. Diagram to determine the thermal and electrical 
conductivity of the matrix: a) averaged element of a 
disordered structure of the matrix; b) equivalent wiring 
scheme of electrical resistances. 

only to elastic deformations. The radius of the nominal contact spot between spherical par- 
ticles in this case is determined according to the classical Hertz theory [12] from the ex- 
pression 

Yz "= ~Y4 Psp ( 6 )  

in which E S is the elastic modulus of the particulate system, P~ = Ps- + G, Psp is the spe- 
cific external pressure, G = 1.601m,hla/y~ is the specific force of gravity of the higher 
layers, and hla is the height of the layer of particles. 

The nominal contact area of real coarse particles is greater, because the elastic modu- 
lus of the rough layer (consisting of microasperities and the gas spaces between them) is 
less than the elastic modulus of the particle material itself. The modulus E S and the 
elastic modulus of the particle material E M are related as follows [13]: 

E S - - -  k e ( ~ p )  I/3E~/3, (7) 

where K E is an empirical coefficient, which varies between 0.5 and i for various materials. 

Experimental studies [13] have shown that E s for various materials (glass and steel balls, 
lead shot, quartz sand) at Psp < 3 kg/cm 2 is practically constant and equal to E s -- 650 kg/ 
cm a. We can therefore rewrite (6) on the basis of (7) as follows: 

for small loads (P~p < 3 kg/cm 2) 

) 

for large loads (3 kg/cm a < Psp < 14 kg/cm a) 

== 1.4 IE>,) (n )  

The actual contact area S a = ~r~ usually constitutes a very small fraction of the nominal 
area S n and is related to it [I0, 13] by the expression S a = ~,S n, where n: varies in the 
interval 10 -2 ~n,~10 -s. Therefore, the relation between y, and Y2 can be expressed in the 

form 
Yi =: ( 3 . 3 .  10 - 3 -  1 �9 l O - l ) ~ .  ( 1 0 )  

Annealing of Particulate Systems 

Annealing of a particulate system is accompanied by concretion (sintering) of the con- 
tacts between particles. Ideal slntering occurs when the contact surfaces are free of ex- 
traneous impurities, are atomically smooth, and are arranged in such a way as to establish a 
one-to-one correspondence in the positions of the atoms of both particles. However, this 
ideal situation is practically never realized. All real surfaces have a relief (roughness), 
so that in the first stage of sintering, when plastic crumpling of the irregularities takes 
place, along with a process of "structural lining up" in the positions of the atoms, in the 
contact zone there are always micropores, which act as a source or sink of vacancies [14]. 
The contact spot in sintering can be estimated from the expression [14] 

y~ = (At) ~, (ll ) 
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in which A and n are constants depending on the sintering kinetics and t is the sintering 
time. 

The relation between Y2 and y~ in the first stage of sintering is analogous to (i0). 

Before determining the thermal and electrical conductivities of the "matrix" we give a 
definition of the actual contact spot. Here we interpret the actual contact spot to mean 
the area of the contacting surfaces wherein "structural lining up" takes place and atomic 
bonds are formed on the contacting parts. The real surfaces of a crystal always have a re- 
lief (roughness), so the regions in which "structural lining up" take place appear as iso- 
lated spots wherever there is close correspondence in the positions of the atoms. The for- 
mation of atomic bonds on the contacting parts occurs immediately in the first stage of sin- 
tering [14]. 

Consequently, the contact between particles is modeled by an area of actual contact with 
radius r, and a contact-adjacent gap with a height equal to the height h r of the particle 
microasperities (roughness height). The relation between the particle microasperity h r and 
diameter d for metal particles can be written in the form h r = kM*10-Sd [i0, 13, 15]. The 
coefficient kM varies in the interval from 0.5 to I [15]. 

Electrical Conductivity of the Average Element 

In determining the effective electrical conductivity of the average element we make use 
of the fact that a current flows across the thin layer of the contact gap if the height of 
the gap is of the order of a few tenths of an angstrom unit, due to the tunnel effect and 
thermionic emission. 

The contact gap has a complex profile, the height of which varies from zero to h r [i0]. 
The current across the gap can become commensurate with the current across the actual con- 
tact spot if the height of the gap h e < I00 ~; see expressions (17)-(19) below. Consequently, 
the current across the contact gap does not flow over the entire area $2 = ~(r~ -- r~), but 
through the area of the gap S e = ~(r~e -- r~), the height of which is equal to h e . The rela- 
tion between r= and r2e can be determined from geometrical constructions: r2e = r2; e = he/ 
hr. 

Now the electrical resistance R c of the contact spot is determined simultaneously with 
the combined resistance RI of the actual contact spot and the resistance R2 of the contact 
gap; i.e., 

Rc l- RF I~RF I, (12) 

where RI = 0.5 he/olzr ~ is the resistance of the actual contact spot and is equal to the re- 
sistance of a plane wall of height equal to half the average height he, R2 = 0.5 he/o2~(r~e -- 
r~) is the resistance of a plane contact gap of height he, and o,, o2 are the electrical con- 
ductivities of the particle and contact gap, respectively. 

The total electrical resistance of the average element (see Fig. 2) is 

R~=~ i-R3, (13) 

where R3 = (r -- 0.5 he)r e is the resistance to the spreading current across the contact, 
and # is the spreading function of the current lines. 

Knowing that R E can be written in the form RZ = r/~r~Om, we determine the effective elec- 
trical conductivity of the average element in the form 

y2 

~m~ ~i o 2 o , (14) 

where he = he/r and ~2 = u=/o,. 

The analytical form of the function r is given in [i0] and for y2e~5| -2 can be ap- 
proximately written 

0 = 0.017 + 0.@2 e (15)  

or for y2e ~0.! in the form r = Y~e. 

It is evident from (12) that conditions can arise such that the area of the actual con- 
tact spot plays only a secondary role in the effective electrical conductivity of a particulate 
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system if that area is relatively small and if the gap between the particle surfaces remains 
of the order of a few tenths of an angstrom unit at distances mu~h greater than the dimen- 
sions of the actual contact spot, i.e., for Y2 >>Yx if hr <<i0 z A. 

Using the fact that h r : 10-Sd, we infer that these conditions can arise if the mean 
particle diameter d<<10 Bm and the system is very lightly sintered (• = 0). 

Electrical Conductivity of a Plane Gap 

To determine the electrical conductivity of the gap it is necessary to solve two fun- 
damental problems: I) to determine the conduction mechanism ~ the gap; 2) to determine the 
shape of the potential barrier and the geometrical dimensions of the gap. 

Electrons can flow across the potentialbarrier of the gap under the following condi- 
tions: The electrons in the conduction band have sufficient thermal energy to overcome the 
potential barrier of the gap and to penetrate into the conduction band of the other conduc- 
tor; this mechanism is called thermlonic emission; if the potential barrier of the gap is 
greater than the thermal energy of the electrons, they can penetrate the barrier by the tun- 
neling effect. 

Both of these mechanisms are often observed simultaneously, and the question as to which 
one is predominant is decided by the work function, the width of the gap, and the tempera- 
ture. The following inequality can be used to estimate which mechanism is predominant [16]: 

h e < - ~  \ 2m*] 

If inequality (16) holds, the tunneling current dominates, and for the opposite inequal- 
ity thermlonie emission is predominant. 

Inasmuch as the number of contacts in the direction of current flow is large, the volt- 
age drop across a single contact is small. The thermionic emission conductivity of the gap 

at small gap voltages is [17] 

CeThe ( v ) 
a 2 g -  K exp 2KT " (17) 

The conductivity of a gap between metal electrodes at small voltages in connection with 

tunneling transition of electrons is [18] 

( / ) 2  , -1 :~  [ 2 ~  (2m, v) ./2 ] (18) azx= ( 2 m v ) ' - e x p  - -  n-~-- " 

If the electrodes are isotopic semiconductors, then the conductivity of the gap can be 

expressed in the form 

e2n F O 2he 
a2s : 22.56 ,2 6 exp (2m%) t'~ , (19) 

(m*/ (~ + EF) ~ 

where ~ : / r  -- eV)/2~eano is the depth of penetration of the field into the semiconductor. 

The expression (19) for ~2s has been derived on the basis of [19]. 

Here ~ is the height of the gap potential barrier; at point x it is equal to 

v(x)=-~--eEx-i-~*, (20) 

where ~o is the electronic work function of the conductor, E is the electric field at the 
contact, and @* is the image force potential, which is equal to [20] 

eZ e12 ~ elz - + e , ~  , (21) 
_ = 2 (nh e-x) 

where ~xa : (~, -- e,)/(~: + r  is the reduced dielectric constant. 

The height of the potential barrier can be determined by solving the equation [21] 
du 

in which xo is the distance at whi~ the potential energy is a maximum. 
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If only the first moments of the image forces are included in (22), 
of (21) we obtain for the height of the potential barrier in the gap 

v = - - % < 1 - p { V l + ~ - 2  8, ~ 1 , [ ( V I  , . _ r l _ l ) V - ~ ] _ , } >  - -  ) 

82 -t- s~ ' 2 

where 

tt ---- e281z/4nhe%e~; ~1 = 4 a E s z h d e e i z .  

The contact field E can be approximately determined from the expression 

dV 

l~zah e 

where V is the voltage applied to the sample (in volts). 

Expressions (17)-(19), 
in the contact gap. 

then on the basis 

(23) 

(24) 

(23), and (24) enable us to determine the electrical conductivity 

Thermal Conductivity 

The thermal conductivity %m of the average element has been determined in [i0] and is 
equal to 

~m= o \ - -  
Y ;  t O . 5 h r - - u ( 1 - - O . S K r ) ~  

_ _  2vg__ 

Yg ,_ (1 - -0 .Sh r - B )  + O,5h r 1 --Vg 

:,: -~ _ _  - i  .~ v2sp(Y~ --Y~) \ (25) 
,, w - - F .  / "  

Here the quantities Vg = Ig/~t; WM3 = ~Ms/~; ~2SP = ~2Sp/~; ~S3 = ~S3/h~; w = [I -- vs3D + 
B/Hd](I -- vS3) account for molecular and radiative heat conduction in the pores and contact 
gaps; expressions for them are given below; also, %x is the thermal conductivity of the par- 
ticles, and D = /i-- y~ F = /i-- 2 Y2* 

Radiative and Molecular Thermal Conductivity of the 

Filler Gas in the Pores 

An analysis of the thermal conductivity for radiative and molecular heat transfer in the 
pores of a particulate system is carried out in [i0, 14]. The expressions for %i for a plane 
gas interlayer of thickness h i between plates are written in the form 

Z~ :- hg [i -!- B / ( H h ~ ) ] - I +  sreaS_ B T~hi , (26) 

where B has the form 

B 4? 2--a 
=: - -  AoH0 Pr-1. (27) 

i-: ? a 

Here Xg is the thermal conductivity of the filler gas, a is the accommodation coefficient of 
the gas at the walls, y = Cp/Cv is the adiabatic exponent, Pr is the Prandtl number, and Ao 
is the mean free path of the gas molecules at a=mospheric pressure Ho and temperature To. The 
second term in (26) characterizes the contribution of radiative energy transfer to the ther- 
mal conductivity. 

The expressions for the coefficients IMs , IS3, and X2S P are determined according to (26), 
in which the quantities h i are replaced by the characteristic linear space scales hr, ~, and 
d, respectively, where 6~ = (h r + N~ :) is the average height of the spherical gap between 
particles. It is important to note that in determining the thermal and electrical conduc- 
tivities of an ultrafine system we have neglected the influence of thermoelectric inhomoge- 
neity of the contact zone on % and ~ [22]. 

Comparison with Experimental Data 

In real particulate systems several of the parameters have a definite scatter (height 
hr of the microasperities, particle diameter d, areas of the nominal and actual contact spot, 
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Thermal conductivity of ultrafine n-Ge. Calcu- 
lated curves: I) %min; 2) %max. Experimental points for 
four samples prepared under identical conditions [6]. %, 
W/m-~ T, OK. 

Fig. 4. Electrical conductivity of ultrafine n-Ge. Cal- 
culated curves: i) amin;2) ama x. Experimental points 
for four samples prepared under identical conditions[6]. 
a, ~-*cm-*; T, ~ 

etc.). As a result, for the thermal and electrical conductivities I and o we can only indi- 
cate an interval in which their values lie. For particulate systems at atmospheric andhigher 
pressures this scatter is small for %, because in this case the main heat flux is realized 
through the gaseous component. For particulate systems in vacuum the interval of possible 
values of I and a is larger. 

Calculations of %m and a m according to (14) and (25) show that increasing Y2e/Y~ from 
i to i0 = has the effect of increasing 8m/81 from i to 103 . Consequently, to increase z in 
particulate systems a necessary condition is point contact, in which case Y~<< Y2. 

The values of I and a calculated according to (14), (25), and (i) are compared with ex- 
perimental data [6] on the thermal and electrical conductivities of ultrafine n-Ge in vacuum 
(H = 10 -7 mm Hg) in Figs. 3 and 4. At T = 300~ the thermal and electrical conductivities of 
n-Ge have the following values: X, = 60 W/m-~ a~ = 16 ~-*cm -~. The average grain diameter 
is 2 to 2.5 ~m. 

In calculating the minimum effective thermal conductivity %min we determined Y2 from 
(8) and assumed y~ to be equal to Y, = I0-2Y2; see (i0). In ca$culating Xmax we assumed y~ 
to be equal to y, = 10-*y=. In addition, y= = 5.10-2; h r = 20 A; e = 0.5. 

It is evident from Fig. 3 that the calculations give different temperature dependences 
for %min and Xmax" The thermal conductivity %min at T < 650~ remains constant, and at T~ 
650~ it increases (see Fig. 3). The coefficient %max decreases with increasing temperature. 
This behavior is attributable to the fact that in calculating the effective thermal conduc- 
tivity % we considered the thermal conductivity %~ of the grains to be equal to the thermal 
conductivity of crystalline n-Ge, and the latter coefficient decreases with increasing tem- 
perature. For relatively large values of y~, therefore, such that the main heat flux is 
realized through the contact spot, Xmax decreases as X~ decreases. For small values of y, 
at temperatures T > 500~ radiative heat transfer between grains begins to assert itself, 
causing %min to increase. 

The minimum value ~min and maximum value ama x of the electrical conductivity were deter- 
mined for the same values of Y2 and Y, (see Fig. 4). The electrical conductivity across the 
contact gap, a~, was determined according to (17). In calculating Gmin we assumed the value 
of ~2 to be equal to zero. An estimate of o2 has shown that over the entire temperature range 
range ~i may be considered to be constant and equal to ~2 = 10-2; this was the value used 
in the calculation of Omax- 

Calculations according to (14), (25), and (i) show that for a constant ratio 8/8, the 
values of A and a increase if the porosity of the system is decreased, without plastic defor- 
mation of the particles, from an initial value m~ to m~ k = 0.4. This effect can be achieved 
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by vibration shakedown of the particulate system. According to (14) and (25), an increase 
in ~/B~ will be observed with a decrease in the particle diameter, i.e., as Y2e § Y=. This 
condition obtains for d < i ~m (hr < i00 ~). 

It is essential to note that the lack of a good set of experimental data on superficially 
slntered ultrafine disperse systems prevents us from making an extensive comparison with the 
postulated analytical relations. However, an analysis of the existing data fosters the ex- 
pectation that the proposed model and analytical relations will provide a first approximation 
in calculations and analysis of the influence of the energy barriers at the grain boundaries 
(contacts) on transfer processes in superficially sintered ultrafine systems. 

NOTATION 

~, thermoelectric emf; a, electrical conductivity; X, thermal conductivity; ~m, linear 
deformation of particles; Nm, coordination number; A, effective general conductivity of par- 
ticulate system; r2, radius of nominal contact spot; rl, radius of actual contact spot; ES, 
elastic modulus of particulate system; EM, elastic modulus of particle material; Pip, specific 
external pressure; D, diffusion coefficient; K, Boltzmann constant; T, temperature; d, par- 
ticle diameter; hr, roughness (microasperity) height of particles; hr = hr/r; he, height of 
contact gap when the current across the gap is commensurate with the current across the ac- 
tual contact spot; e = he/hr; r2e = er=; C, Richardson constant; e, electron charge; ~, height 
of gap potential barrier; ~ = h/2~, Planck constant; m*, effective mass of electron; c~, di- 
electric constant of particles; e2, dielectric constant of gap; E, electric field; V, volt- 
age applied to sample; hla , height of free-flowing particle layer; Do, work function; @*, 
image force potential; Ere , reduced emissivity; oS-B, Stefan--Boltzmann constant; B = o/X; 
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